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The preceding Comment by Basombrio and Campo challenges the numerical calculations and the conclu-
sions on the variations of lifetimes with parameters presented by Eckhardt and Mersmann �Phys. Rev. E 60,
509 �1999��. The authors claim that the singular variations are ruled out by standard mathematical results and
that the numerical accuracy is insufficient to support our conclusions. We will show that the first claim is based
on a misinterpretation of the theorems and that the second line of reasoning ignores the structural origin of the
singularities.
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In Ref. �2� we presented a low-dimensional model for the
dynamics of shear flows that become turbulent without a
linear instability of the laminar profile. The turbulent dynam-
ics was found to be transient. We studied it by picking initial
conditions and determining the time it took to return to the
laminar profile. The studies show a sensitive dependence on
initial conditions and wild variations in lifetimes, which led
us to suggest that this was due to an underlying fractal set of
singularities. The Comment by Basombrio and Campo �1�
challenges the numerical calculations and the conclusions on
the variations of lifetimes with parameters presented in �2�.
The authors claim that the singular variations are ruled out
by standard mathematical results and that the numerical ac-
curacy is insufficient to support our conclusions. We will
show that the first claim is based on a misinterpretation of
the theorems and that the second line of reasoning ignores
the structural origin of the singularities.

�1� The authors claim that “nonfractality is a direct con-
sequence of the continuous dependence on initial values of
the original problem” �quoted from �1��. To support this they
quote a mathematical theorem applicable for “any compact
set in the extended phase space” �1�. Such results do not
apply here, as the relevant extended phase space, consisting
of the state variables of the system and the time coordinate,
is not compact: The lifetime problem intrinsically asks for
times going to infinity, and then the smooth variation is no
longer given. Consider the differential equation ẋ=�x with
the solution x�t�=x0 exp��t�. The equivalent of the lifetime
measurements in �2� and other papers �3–6� is to take �x0�
small and to ask for the time it takes to reach some large
value L, i.e., �x��L. This time is T= �1/��ln�L /x0�, and it
passes through infinity when x0→0. The theorem quoted in
the Comment requires a finite �extended� phase space, so it
does not contain the complete trajectories from the initial
value to the threshold if the initial value is too close to zero.

�2� The structural reason for the existence of the singu-
larities in lifetimes as claimed in �2� is the existence of hy-
perbolic saddles in phase space. In �2� only stationary states
that appear at higher Reynolds number were studied. The
presence of periodic orbits at lower Reynolds numbers, as
detected by Schmiegel �7�, is mentioned in the Conclusions.

A more complete analysis of a related model is given in �8�.
If a hyperbolic structure exists in phase space, the motion

along an unstable manifold is described by the simple differ-
ential equation given under the previous item. Therefore, tra-
jectories very close to the stable manifold will have large
lifetimes and those on the stable manifold will have infinite
lifetimes.

If there is not just a single hyperbolic saddle but a Smale
horseshoe type structure, then there will be infinitely many
stable manifolds and a sampling of initial conditions crossing
all these manifolds will have a dense set of singularities.

Finite time tracking of a trajectory cannot establish per-
manent trapping. But the wild fluctuations of lifetimes under
parameter variation combined with the presence of hyper-
bolic objects make the existence of singularities in lifetimes
very plausible. On the quantitative side, results of �9� show
that the long lifetimes imply that the stable manifolds are
almost spacefilling, so that the one-dimensional line of initial
conditions will most likely cross it an infinite number of
times.

�3� Following a trajectory for a long time in a chaotic
system is plagued by the exponential sensitivity implied by a
positive Lyapunov exponent. The numerical examples in the
Comment show this very clearly. How errors are amplified
depends on specifics of the system, and in some cases a
numerical trajectory can remain close to a true one for unex-
pectedly large times �10�.

In view of this it is important to realize that the key to the
behavior of the system is not the numerical demonstration of
infinite lifetimes �which is impossible�, but the presence of
the hyperbolic elements. Typically, these elements are either
stationary �11,12� or simply periodic �13�, and require calcu-
lations for finite times only. The relation between the exact
objects and the numerical approximation is then controlled
by the usual considerations in numerical analysis. For the
finite differential equations studied in �2,4,8� Newton’s
method gives fixed points to within machine precision and
periodic solutions to better than 10−10 with not too much
effort.

�4� Finally, I would like to point out that these studies are
the partial differential analog of the chaotic scattering inves-
tigations in ordinary differential equations, triggered by stud-
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ies in chemical physics, astrophysics, and hydrodynamics
�14–17�, reviewed in �18–20�. There, simple models have
been developed �21,22� that make the singular variations of
lifetimes very transparent.
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